

JAF-P-XVII Seat No.

B. Sc./M. Sc. (Applied Physics) (Sem. V) (CBCS) Examination

November - 2019 Statistical Physics-XVII (New Course)

Time : $2\frac{1}{2}$ Hours]

[Total Marks : 70

- 1 Attempt any SEVEN short questions (Two marks each) 14
 - 1. Explain canonical ensemble.
 - 2. Write the principle of equipartition of energy.
 - 3. Write about the uses of ensembles.
 - 4. What is thermodynamic probability?
 - 5. Prove that in a radiation cavity equilibrium number of photons $N = VT^3$.
 - 6. What was the discrepancy in Einstein's specific heat model?
 - 7. Prove that for a classical case molar specific heat of solids follows Dulong-Petit law.
 - 8. Write some typical data for white dwarfs.
 - 9. Derive an equation for mean energy of fermions at T = 0 K.
 - 10. What is chandrashekhar mass limit? Write its relation with mass of the Sun.
- 2 (A) Write answers of any two
 - 1. Write a brief note: phase space.
 - 2. Discuss Statistical equilibrium and Grand canonical ensemble.
 - 3. Derive the equations for the number of phase cell for harmonic oscillator and three dimensional free particles.

4. Derive the equation for volume in phase space

$$d\tau = (2m)^{\frac{3}{2}} \varepsilon^{\frac{1}{2}} d\varepsilon V$$

- (B) Write answers of any one.
 - 1. Prove: Sterling's Approximation.
 - 2. Discuss thermal equilibrium and mechanical equilibrium.
- **3** Write answers of any two:

14

- 1. Derive general statistical distribution law and explain most probable distribution.
- 2. What is harmonic oscillator? Derive an equation for mean energy of harmonic oscillator.
- 3. Derive equation for relation between partition function and thermodynamics in detail.
- 4. Derive an equation for number of phase cells in the volume element.
- 4 Write answers of any two:

14

- 1. Prove that radiation pressure for a photon gas is equal to one third of the energy density.
- 2. Derive Einstein equation for specific heat of solids.
- 3. Derive Debye's equation for specific heat of solids.
- 4. Explain in detail: Radiation density and emissivity of photon gas.

5 (A) Write answers of any two:

- 10
- 1. Derive an equation for Fermi energy of gas using Heisenberg's uncertainty principle.
- 2. Derive an equation for pressure exerted by Fermi gas in a white dwarf.
- 3. Discuss: Atomic nucleus as an ideal fermion gas.
- 4. The molar mass of Lithium is 0.00694 and its density is 0.53×10^3 kg/M³. Calculate the Fermi energy of the electrons.
- (B) Write answers of any two:

4

- 1. Explain the main drawbacks of Drude's thory.
- 2. What are the white dwarfs?
- 3. Discuss the Hertz sprung-Russel diagram for the brightness of stars.
- 4. What is the ground state energy of a Fermi gas?

JAF-P-XVII] 3 [50]